

DIDATTICO Cos'è la Tecnologia?

La tecnologia è la scienza che studia i materiali, la composizione, le caratteristiche, le lavorazioni necessarie per le trasformazioni e il loro impiego

Composizione dei materiali:

NATURALI

NATURALI MODIFICATI

ARTIFICIALI

Utilizzati così come si trovano in natura: pietre, sabbia, legno, lana

Conservano inalterata la loro composizione interna ma sono parzialmente trasformati dall'uomo: legno compensato, pelle conciata, tessuto, benzina, rame

Composizione completamente nuova perché ottenuta attraverso particolari processi di trasformazione: cemento, carta, leghe metalliche, gomma, plastica, tessuti acrilici

SUDDIVISIONE DEI METALLI

in base alle caratteristiche di comportamento più appariscenti

METALLI

Solidi a temperatura ambiente (eccetto il mercurio), buoni conduttori di calore e di elettricità, lucenti, opachi alla luce, deformabili, resistenti a sollecitazioni esterne: ferro, argento, oro, nichel, cromo, cobalto, zinco, piombo ecc

NON METALLI

Generalmente
hanno struttura
amorfa o
gassosa, cattivi
conduttori di
calore ed
elettricità, poco
resistenti a
sollecitazioni
esterne:
zolfo, fosforo,
azoto, ossigeno
ecc

LEGHE

Si ottengono mediante l'unione di più elementi; hanno caratteristiche migliori degli elementi di partenza: ottone (rame e zinco), bronzo (rame e stagno), acciaio (ferro e carbonio)

MISCUGLI

Costituiti dalla
miscela di più
elementi
ciascuno dei
quali conserva le
caratteristiche
originali; granito
(minerali, sabbia
e legante),
calcestruzzo
(cemento,
sabbia, ghiaia

PROPRIETA' CARATTERISTICHE DEI MATERIALI

Tutti i materiali hanno delle proprietà caratteristiche che li differenziano notevolmente.

PROPRIETA' CHIMICHE

Composizione chimica del materiale e la sua struttura interna

PROPRIETA' FISICHE

PROPRIETA' TECNOLOGICHE

L'attitudine del materiale a essere trasformato mediante lavorazione

Caratteristiche legate alla natura del materiale e al comportamento in relazione agli agenti esterni: calore, gravità, elettricità

PROPRIETA' MECCANICHE

Resistenza alle sollecitazioni a cui viene sottoposto durante il suo impiego: pressione, trazione, flessione, compressione, urti e taglio

PROPRIETA' FISICHE

A) Temperatura di fusione (tf):

La temperatura alla quale, si verifica il passaggio dallo stato solido a quello liquido .In base a questa caratteristica i materiali si dividono in:

REFRATTARI

NORMALI

BASSO FONDENTI

temperatura di
fusione superiore a
2000 °C:
Leghe metalliche
speciali, ceramiche,
refrattari silicoalluminati, refrattari
magnesiaci ecc

temperatura di fusione compresa fra 500 e 2000 °C: ferro, ghisa, acciaio, rame, alluminio ecc temperatura di fusione inferiore a 500 °C: piombo, stagno

B) Massa volumica (Mv)

Il rapporto fra la massa di un corpo, espressa in kg, e il suo volume espresso in m3

Prima dell'introduzione del Sistema Internazionale di misura (SI), la massa volumica (Mv) veniva chiamata peso specifico. Sono chiamate leghe leggere quelle a base di alluminio con massa volumica inferiore a 4000 kg/m3 e leghe ultraleggere quelle a base di magnesio con mas-sa volumica inferiore a 2000 kg/m3.

C) Capacità termica massica (Ctm)

A volte detta anche calore specifico (Cs), la quantità di calore, espressa in J, necessaria per innalzare di 1 °C la massa di 1 kg di sostanza. Il valore della capacità termica massica varia in funzione della temperatura

D) Dilatazione Termica (α)

L'attitudine dei materiali di variare il proprio volume al cambiare della temperatura.

Nel caso di solidi con una dimensione prevalente sulle altre (fili, barre ecc.), la dilatazione più significativa è quella che si verifica lungo l'asse più lungo e viene detta dilatazione lineare

PROPRIETA' MECCANICHE

Esprimono la capacità di un materiale di resistere alle azioni provocate dalle forze esterne che tendono a deformarlo.

FORZE STATICHE

- Applicate in modo costante o variano lentamente nel tempo.
- La capacità dei materiali di contrastare gli effetti delle forze statiche è detta resistenza alla deformazione

FORZE DINAMICHE

- Applicate in tempi brevi, per esempio: martellatura all'incudine.
- La capacità dei materiali di contrastare gli effetti delle forze dinamiche è detta resilienza

FORZE PERIODICHE

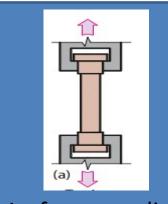
- Variabili
 periodicamente
 con un
 andamento che si
 ripete
 costantemente
 nel tempo e con
 frequenza
 elevata; per
 esempio: forze
 applicate alla
 biella del motore
 a scoppio
- La capacità di resistere alle forze periodiche è detta resistenza a fatica

FORZE CONCENTRATE

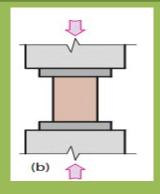
- Applicate in zone ristrette o puntiformi; per esempio: scalpellatura, punzonatura.
- La capacità dei materiali di contrastare gli effetti delle forze concentrate si chiama durezza

FORZE DI ATRITO

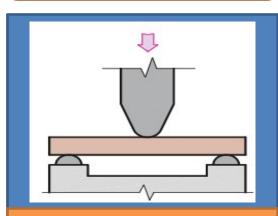
- Si manifestano tra le superfici di contatto di due corpi mobili, fra loro striscianti (attrito radente) o rotolanti (attrito volvente); per esempio: pattini a coltello, cuscinetto a sfere.
- La capacità dei materiali di contrastare le forze di attrito si chiama resistenza all'usura


I CARICHI

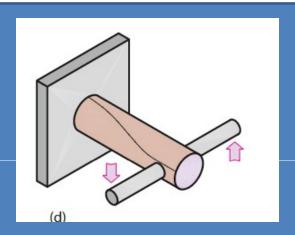
Le forze statiche applicate dall'esterno ai corpi si chiamano carichi e generano, nel loro interno, un insieme di sollecitazioni che tendono a deformarli.


TRAZIONE

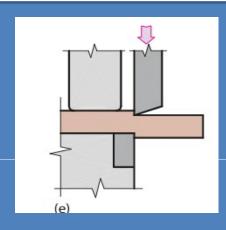
COMPRESSIONE


FLESSIONE

Le forze, applicate esternamente, sono dirette lungo l'asse del corpo e tendono ad allungarlo


Le forze, applicate esternamente, sono dirette lungo l'asse del corpo e tendono ad accorciarlo. Le sollecitazioni di trazione e compressione sono dette anche sollecitazioni assiali

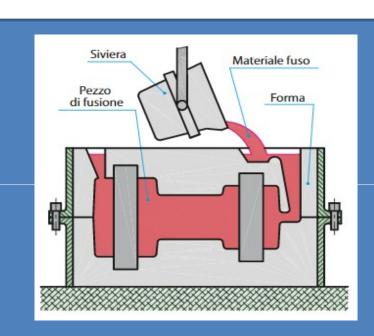
Le forze esterne agiscono su un piano perpendicolare all'asse principale e tendono a flettere il corpo, cioè a piegarlo


I CARICHI

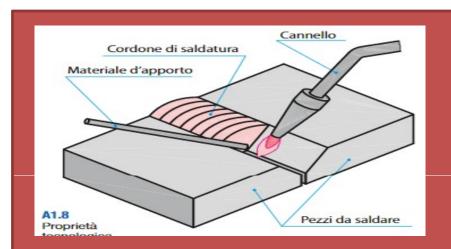
TORSIONE

Le forze esterne agiscono su un piano perpendicolare all'asse del corpo e tendono a torcerlo, cioè a fare ruotare reciprocamente le diverse sezioni dell'albero facendolo torcere

TAGLIO

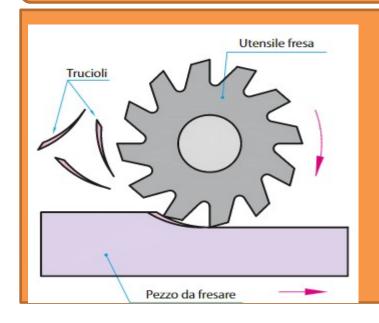

Le forze esterne applicate agiscono in direzione perpendicolare all'asse principale e tendono a recidere due sezioni trasversali adiacenti del corpo. A questa azione si oppone la durezza del materiale.

Le proprietà tecnologiche definiscono l'attitudine dei materiali a essere trasformati mediante lavorazioni. Esse sono:



FUSIBILITA'

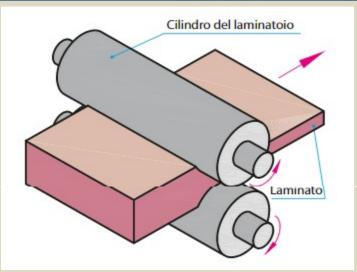
SALDABILITA'



È l'attitudine di un materiale a es-sere colato allo stato liquido dentro una forma per ottenere un getto di fusione. Sono fusibili le ghise, i bronzi, gli ottoni e le leghe

L'attitudine di un materiale a unirsi facilmente con un altro, di uguale o diversa natura, tramite fusione e/o aggiunta di materiale d'apporto. Sono saldabili il ferro, gli acciai dolci e le leghe metalliche in genere

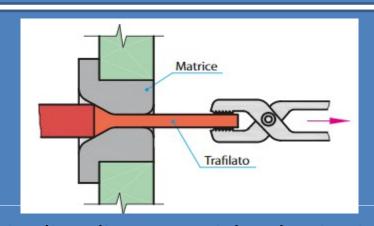
TRUCIOLABILITA'

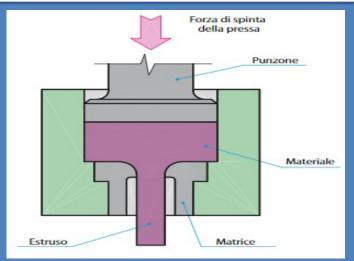


L'attitudine di un materiale a subire lavorazioni con asportazione di truciolo, mediante l'utilizzo di utensili Truciolabili sono le ghise, gli acciai al piombo (acciai automatici), i bronzi, l'alluminio e le sue leghe (leggere), il magnesio e le sue leghe (ultraleggere).

PLASTICITA'

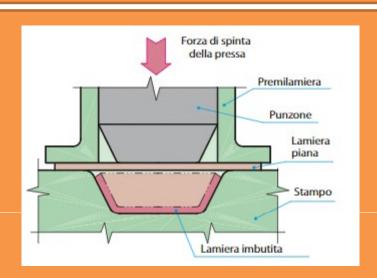
La proprietà che manifestano alcuni materiali di deformarsi permanentemente, senza screpolarsi o rompersi, sotto l'azione di forze esterne. A seconda dei sistemi di deformazione e della forma finale ottenuta, si distinguono le successive proprietà tecnologiche.


MALLEABILITA'

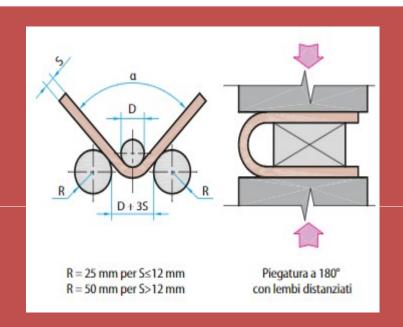

L'attitudine di un materiale a lasciarsi ridurre, a caldo o a freddo, in lamine, senza screpolarsi o rompersi, mediante l'azione di presse, magli o laminatoi . Sono malleabili i materiali che possono subire un buon allungamento, che presentano una bassa durezza e limitata resistenza a trazione. L'operazione che sfrutta questa proprietà si chiama laminazione e i prodotti ottenuti si dicono laminati

ESTRUDIBILITA'

DUTTILITA'



L'attitudine di un materiale a lasciarsi ridurre in fili senza rompersi se costretto a passare (per trazione) attraverso un foro di forma e dimensione opportune. Sono duttili: acciaio dolce, argento, oro, alluminio, rame, leghe speciali di acciaio al nichel-cromo e al magnesio. L'operazione che sfrutta questa proprietà si chiama trafilatura e i prodotti ottenuti trafilati


L'Attitudine di un materiale ad assumere forme determinate se costretto a passare (per spinta) attraverso un foro sagomato Sono estrudibili gli acciai dolci e le leghe leggere. L'operazione che sfrutta questa proprietà è detta estrusione e i prodotti ottenuti estrusi (per esempio, i profIllati di alluminio)

IMBUTIBILITA'

L'attitudine di un materiale a lasciarsi deformare a freddo, ottenendo corpi cavi, senza rompersi o screpolarsi. Sono imbutibili gli acciai extradolci, il rame, l'ottone, l'alluminio. L'operazione che sfrutta questa proprietà si chiama imbutitura e i prodotti ottenuti stampati (per esempio, la carrozzeria dell'auto)

PIEGABILITA'

L'attitudine di alcuni materiali a subire l'operazione di piegatura senza rompersi o screpolarsi. Sono facilmente piegabili gli acciai dolci e, in generale, tutti i materiali malleabili

www.blogdidattico.it